
HOMEWORK 5

Due date: Tuesday of Week 6,
Exercises: 2.3, 6.1, 6.2, page 437-439

Here is a translation of Ex 6.1. Let f1, f2, f3, . . . ,∈ C[x1, . . . , xn] be an infinite sequence of polyno-
mials. Let V = {a = (a1, . . . , an) ∈ Cn : fi(a) = 0,∀i ≥ 1}. Show that there exists a finite number of
polynomials g1, . . . , gk ∈ C[x1, . . . , xn] such that V = {a = (a1, . . . , an) ∈ Cn : gi(a) = 0, 1 ≤ i ≤ k}.

Problem 1. Suppose that the following diagram of R-modules is commutative and the rows are
exact sequences

M N P 0

0 M ′ N ′ P ′

ϕ

f

ψ

g h

ϕ′ ψ′

Show that there is an exact sequence

0 → Ker(ϕ) → Ker(f) → Ker(g) → Ker(h) → Coker(f) → Coker(g) → Coker(h) → Coker(ψ′) → 0.

The homomorphism ∂ : Ker(h) → Coker(f) is defined as

∂(x) = (ϕ′)−1gψ−1(x),∀x ∈ Ker(h).

You are required to check that ∂ is well-defined and check the sequence is exact at every place.
The above assertion is called the extended snake lemma.

Problem 2. Use the above extended snake lemma to give a new proof of the following 3-lemma.
Given the following commutative diagram of R-modules with exact rows

0 M N P 0

0 M ′ N ′ P ′ 0

ϕ

f

ψ

g h

ϕ′ ψ′

If two of f, g, h are isomorphisms, then the third one must be an isomorphism.

Think about if it is possible to use the above 3 lemma to give a new proof of the 5-lemma.

Problem 3. Let

(0.1) M ′ M M ′′ 0u v

be a sequence of R-modules. Let N be another R-module. We can form the following sequence

(0.2) 0 Hom(M ′′, N) Hom(M,N) Hom(M ′, N)v∗ u∗

where u∗(f) = f ◦ u for f ∈ Hom(M,N) and v∗ is defined similarly. Show that the sequence (0.1)
is exact iff the sequence (0.2) is exact for any R-module N .

Problem 4. Let

(0.3) 0 N ′ N N ′′u v

be a sequence of R-modules. Let M be another R-module. We can form the following sequence

(0.4) 0 Hom(M,N ′) Hom(M,N) Hom(M,N ′′)
u∗ v∗

where u∗(f) = u ◦ f for f ∈ Hom(M,N ′) and v∗ is defined similarly. Show that the sequence (0.3)
is exact iff the sequence (0.4) is exact for any R-module M .
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An R-module M is called Noetherian if its submodules satisfies acc conditions. Recall that this
is equivalent to that every submodule of M is finitely generated. We learned in class that a finitely
generated module over a Noetherian ring is a Noetherian module.

Problem 5. Given a short exact sequence of R-modules

0 → N →M → P → 0.

Show that M is Noetherian iff both N and P are Noetherian.

Caution: A subring of a Noetherian ring is not necessarily a Noetherian ring. Example, let
R = F [x1, x2, . . . ] be a polynomial ring with infinite number of variables over a field F . You can
check that R is an integral domain but not Noetherian. Let K be the fractional field of R. Then K
is a Noetherian ring but R is not.

Problem 6. Let R be a ring and M be a Noetherian R-module. Let f ∈ HomR(M,M). Show that if
f is surjective then it is also injective and thus an isomorphism. Give an example of f ∈ HomZ(Z,Z)
(here Z is viewed as an Z-module and thus f is just a homomorphism between abelian groups, which
is not required to be a ring homomorphism) such that f is injective but it is not surjective.

Hint: consider the chain submodules Ker(f) ⊂ Ker(f2) ⊂ · · · ⊂ Ker(fn) ⊂ . . . . Since M is
Noetherian, it is stationary. Let N = ∪∞

i=1Ker(f i) = Ker(fn) for a big n. Consider the map
g = f |N : N → N . Show that g is well-defined (namely g(N) is indeed in N) and surjective. Then
consider gn.

If M is Noetherian (which means any submodule of M is finitely generated), then it is finitely
generated. The converse is false. Namely, if M is finitely generated, it is not necessarily Noetherian,
unless the ring R is also Noetherian. For example, if R = F [x1, x2, . . . , ], the polynomial ring over
a field F with infinitely many variables, and M = R. Then M is finitely generated (actually it is
generated by 1 ∈ R), but M is not Noetherian, because its submodule (in this case, it is just an
ideal) I = ⟨x1, x2, . . . , ⟩ is not finitely generated.

The above problem is also true if M is finitely generated (without assuming it is Noetherian),
which you can prove in the next HW. But it is false if M is not finitely generated, namely, if R is
not finitely generated R-module, then f ∈ HomR(M,M) surjective does not imply it is injective.
Even when R is a field so every module is a vector space, surjectivity does not imply injectivity if
the dimension is not finite. Here is one example. Consider M = Z × Z × · · · =

∏
i≥0 Z (infinite

copies of Z, see also the next part of this HW for infinite product of modules) and consider the map

f :M →M

(α0, α1, α2, . . . ) 7→ (α1, α2, α3, . . . ).

Then f is surjective but Ker(f) ∼= Z. On the other hand, the isomorphism M/Ker(f) ∼= Im(f) =M
does not directly imply Ker(f) = 0. See the above example when M =

∏
i≥0 Z. Think about why

(the reason is: equality and isomorphism are different. This is subtle but important).

1. Product and direct sum of modules

We have defined direct sum and direct product of vector spaces. The definition can be extended
to modules over rings. We fix a ring R (which is assumed to be commutative with 1 as usual).

Definition 1. Let I be an index set. Suppose that we are given a module Mi over R for each i ∈ I.
The direct sum of Mi is a pair (⊕i∈IMi, (ιi)i∈I), where

(1) ⊕i∈IMi is a module over R; and
(2) (ιi)i∈I is a family of maps ιi ∈ HomR(Mi,⊕i∈IMi),

such that for any other R-module X, and for any other family of linear maps fi ∈ HomR(Mi, X) for
each i ∈ I, there is a unique homomorphism f : ⊕i∈IMi → X such that fi = f ◦ ιi for each i ∈ I.
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In other words, we have the following diagram

Mi
ιi //

fi   

⊕i∈IMi

∃!f
{{

X

Dually, we can define direct products.

Definition 2. Let I be an index set. Suppose that we are given a module Mi over R for each i ∈ I.
The direct product of Mi is a pair (

∏
i∈IWi, (pi)i), where

(1)
∏
i∈IMi is an R-module; and

(2) pi :
∏
i∈IMi →Mi is an R-module homomorphism,

satisfying the following universal property. Given any pair (X, (fi)i∈I), where X is an R-module
and fi ∈ HomR(X,Mi), then there is a unique linear map f : X →

∏
i∈IMi such that fi = p ◦ f .

Mi

∏
i∈IMipi

oo

X

fi

``

∃!f

;;

Theorem 1.1. Direct product and direct sum exists.

Proof. Define
∏
i∈IMi as follows. As a set, it is just the product whose elements are (αi)i∈I , with

each αi ∈Mi; the addition and scaler product are defined component wise:

(αi)i∈I + (βi)i∈I := (αi + βi)i∈I , αi, βi ∈Mi;

r(αi)i∈I := (rαi)i∈I , r ∈ R.

Define pi :
∏
i∈IMi →Mi be the projection: pi((αi)i∈I) = αi.

Define ⊕i∈IMi =
{
(αi)i∈I ∈

∏
i∈IMi| αi = 0 except for a finite number of i ∈ I

}
and define ιi :

Mi → ⊕i∈IMi by ιi(α) = (αi)i∈I , where αi = α and αj = 0 if j ̸= i. □

Problem 7. Show that (
∏
i∈IMi, (pi)i∈I) is indeed the direct product (namely, it satisfies the uni-

versal property in Definition 2) and (⊕i∈IMi, (ιi)i∈I) satisfies the universal property in Definition
1. Thus the direct sum is the same with direct product only when the index set I is finite.

Problem 8. Let I be an index set. Suppose that we are given a module Mi over R for each i ∈ I.
Let X be any R-module. Show that there are isomorphisms

HomR(X,
∏
i∈I

Mi) ∼=
∏
i∈I

HomR(X,Mi);

HomR(⊕i∈IMi, X) ∼=
∏
i∈I

HomR(Mi, X).

Keep in mind that HomR(X,Mi) is also an R-module and
∏
i∈I HomR(X,Mi) denotes product

of R-modules.
Let M be an R-module. Recall that a subset S ⊂ M is called a basis of S if (1) S is linearly

independent and (2) S generates M . An R-module M is called free if it has a basis. If |S| = n, we
get an isomorphism Rn ∼=M .

Problem 9. Let I be an index set and Mi is a free R-module for each i. Show that ⊕i∈IMi is also
a free R-module.

In general, an infinite direct product of free modules is not free. For example,
∏
i∈I Z is not a

free abelian group if I is infinite, see this link.

Problem 10. Let R be a ring and N be any R-module. Show that there exists an isomorphism

HomR(R
m, N) ∼= Nm,

for a positive integer m.

https://math.stackexchange.com/questions/320444/why-isnt-an-infinite-direct-product-of-copies-of-bbb-z-a-free-module
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If R is a field. This is Theorem 3.1 of Hoffman-Kunze. For general R the proof is similar. It can
also be deduced from Problem 8.
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